
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 13: Kernel vs. user address spaces

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda
1. Midterm.

2. Review of paging and eviction.

3. Kernel vs. user.

2

Agenda
1. Midterm.

2. Review of paging and eviction.

3. Kernel vs. user.

3

Midterm exam
Online using Crabster.org
Wed Jun 24 3:00 to 5:00
pm EDT.

We will post a link via
Canvas and Piazza once
the exam once it’s live.

We will monitor Piazza for
questions.

4

Material for midterm:

1. All the lecture topics from
start until end of lecture 9 on
deadlock.

2. All the labs on these topics.

3. Projects 1 and 2.

Next week will be a break between spring and summer semesters
and for Independence Day.

We will meet again on July 6.

Midterm policy
The exam will be “open everything” except collaboration.

You can use any existing resource, including lecture notes, the book,
your P1 and P2 solutions, you can use Google, and your IDE.

The only thing you can’t do is collaborate with others, including using
social media to solicit help. If you can find an existing answer on
stackexchange that’s helpful, that’s fair game. But you can’t post a
question.

Also, parts of the exam ask for short answers, which must be in your
own words. Cutting and pasting word-for-word from an existing
source and “close copying” will be treated as plagiarism and
reported to the Honor Council.

5

Agenda
1. Midterm.

2. Review of paging and eviction.

3. Kernel vs. user.

6

Dynamic address translation

7

Break the requirement that the process space be
contiguous.

MMU strategies we’ll discuss:
1. Base and bounds.
2. Segmentation.
3. Paging.

user
process

translator
(MMU)

physical
memoryvirtual

address
physical
address

Paging
Allocate phys. memory in fixed-size units (pages).
Any free physical page can store any virtual page.

8

Address Space

Page 1

Page 2

Page 3

Page N

Physical Memory

9

Page Lookups

Phys page #

Page number Offset

Virtual Address

Page Table
Page number Offset

Physical Address

Physical Memory

Paging

10

Virtual page # Physical page # Resident Protection
0 105 0 RX
1 15 1 R
2 283 1 RW
3 invalid
... invalid
1048575 invalid

Valid virtual page is legal for process to access.
Resident virtual page is valid and in physical memory.
Error to access invalid page, but not to access non-resident page.

Paging

11

Virtual page # Physical page # Resident Protection
0 105 0 RX
1 15 1 R
2 283 1 RW
3 invalid
... invalid
1048575 invalid

Causes of a page fault:
1. Invalid page or disallowed by protection bits, often a user bug.
2. Not resident and must be brought in by the OS.

Paging
Each virtual page can
be in physical memory
or “paged out” to disk.

Pages can also have
different protections
(e.g., read, write,
execute).

12

MMU_translation()
{
if (virtual page is

invalid or non-resident or protected)
trap to OS fault handler;

else
{
physical page # =

pageTable[virtual page #].physPageNum;
physical address =

concat(Physical page #, offset);
}

}

Page table size
Page size is typically 4 KB or 8 KB.
Some architectures support multiple page sizes.

Each process with a 32-bit address space with 4-byte page table
entries requires:

232

4096
∗ 4 = 4 𝑀𝑀𝑀𝑀

A 64-bit address space with 8-byte entries requires:

264

4096
∗ 8 = 3.6 ∗ 1016 = 36 𝑃𝑃𝑃𝑃

13

14

Sparse address space
Virtual
page #

Physical
page #

0 105
1 15
2 283
3 invalid
... invalid
1048572 invalid
1048573 1078
1048574 48136
1048575 60

Stack

Code

Heap

Invalid

Most processes use only a
tiny fraction of their 32 or
64-bit address space.

They usually have a huge
hole in the middle.

So we only need to
represent that part of the
page table that isn’t marked
invalid.

15

A standard page table is a
simple array.

Multi-level paging
generalizes this into a tree,
filling in only the parts of the
tree that aren’t marked
invalid.

With multilevel paging, a lot
of the entries in any given
page table will be null.

Multi-level paging

Image source: Anderson & Dahlin, Operating Systems: Principles and Practice, p. 398.

Multilevel paging
Pros
1. Simple memory allocation.
2. Flexible sharing.
3. Easy to grow address space.
4. Space-efficient representation of the page table.

Cons
1. Two or more extra lookups per memory reference.

The solution is to cache parts of the page table in
hardware.

16

17
Image source: Wikipedia, “Page table”.

TLB caches the virtual
page number to PTE
mapping.

A cache hit skips all the
translation steps.

A cache miss requires
searching the page table,
updating the TLB, and
restarting the instruction.

18
Image source: Wikipedia, “Page table”.

The TLB is implemented
in hardware as a
content-addressable
memory that acts like a
map in C++.

Page table lookups are
done in software in the
operating system.

Page replacement
Not at all valid pages can be in physical memory.

Must decide how to handle loads/stores to non-resident
pages.

Sometimes, we will need to evict a page to make room
for another.

19

Page Replacement
Not all valid pages may fit in physical memory
Some pages must be paged out (written) to disk.
Disk is the “backing store”, physical mem acts as cache.

To read in a page from disk, some resident page may need to be paged
out, “evicted”, first.

Need an algorithm to decide which page to evict to make space.
Goal: minimize page faults.
LRU hard to beat but sometimes fails.

20

Page table entry

21

Physical page # Resident Protection Dirty Referenced

Written by OS, Read by MMU
Written by OS/MMU

Read by OS

MMU_translation()
{
if (virtual page is invalid or non-resident or protected)

trap to OS fault handler;
else

{
physical page # = pageTable[virtual page #].physPageNum;
pageTable[virtual page #].referenced = true;
if (access is write)

pageTable[virtual page #].dirty = true;
physical address = concat(Physical page #, offset);
}

}

Page table entry

22

Physical page # Resident Protection Dirty Referenced

Written by OS, Read by MMU
Written by OS/MMU

Read by OS

Why no valid bit in PTE?
All invalid virtual pages are non-resident.

Valid non-resident pages: where’s the disk block?
OS must maintain this, MMU simply traps to OS.

How can we make do without resident bit?
Clear protection bits when non-resident to cause hardware fault.

Page table entry

23

Physical page # Resident Protection Dirty Referenced

Written by OS, Read by MMU
Written by OS/MMU

Read by OS

Can we make do without the dirty bit?
Have OS set the dirty bit itself.
Naive solution: Trap on every store & mark dirty.

How to reduce # of page faults?
Only care about transition from clean to dirty.
Clean pages have 0 write protection bit.
Dirty pages have usual value.

Page table entry

24

Physical page # Resident Protection Dirty Referenced

Written by OS, Read by MMU
Written by OS/MMU

Read by OS

Can we make do without referenced bit?
Can use similar trick as that used for dirty bit.
Insight: only care about unreferenced  referenced.

These changes make the MMU hardware simpler but the page fault
handler more complex.

Agenda
1. Midterm.

2. Review of paging and eviction.

3. Kernel vs. user.

25

Address space management
How to manage a process’s accesses to its address space?

1. Kernel sets up page table per process and manages which
pages are resident.

2. MMU looks up page table to translate any virtual address to a
physical memory addresses.

What about kernel’s address space?

How should MMU handle kernel’s loads and stores?

26

Storing page tables
Two options:
1. In physical memory.
2. In kernel’s virtual address space.

Difference: Is the address held in the page table base register (PTBR) a
physical or virtual address?

Pros and cons?
Simplicity versus being able to page parts of the kernel (which could be
huge.)

Project 3 uses the second option:
Kernel’s address space is managed by infrastructure.

27

Kernel vs. user address spaces
Can you evict the kernel’s virtual pages?
Yes, except code for handling paging in/out is pinned

How can kernel access specific physical memory addresses (e.g., to
write to page table)?
1. Kernel can issue untranslated address (bypass MMU).
2. Kernel can map physical memory into a portion of its address

space (e.g., vm_physmem in Project 3).

28

Accessing physical memory
How does the kernel access physical memory?
Could map physical memory 1-to-1 into window in virtual address
space
vm_physmem[n]: nth byte of physical memory

29

vm_physmem

Physical Memory Kernel Virtual Memory

How does the kernel access the user’s
address space?

User and kernel often need to share
data, e.g., arguments to a system call.

Options:

1. Kernel could manually translate a
user virtual address to a physical
address, then access the physical
address.

2. Can map kernel address space into
every process’s address space.

Concerns?

Ordinary users should not have kernel
access.

30

fffff
.
.
.
80000

operating system

7ffff
.
.
.
00000

user process

Protection: kernel/user mode
How are we protecting a process’s address space from other
processes?
1. Page tables: Dynamic translation to disjoint physical memory.
2. Must ensure only the kernel can modify translation data.

How does CPU know the kernel is running?
Hardware support with a mode bit to indicate when we’re running in
kernel (privileged) vs. user mode

How do we protect the mode bit from being changed by the user?
We make the user do a system call, but how does that work?

31

Switching to kernel mode
Faults and interrupts
1. Timer interrupts.
2. Page faults.
Why are these safe to transfer control to kernel?
User doesn’t get to choose what runs when the interrupt is taken.

System calls
1. Process management: fork()/exec()
2. I/O: open(), close(), read(), write()
3. System management: reboot()
4. …

32

System calls
When you call cin in your C++ program:
1. cin calls read(), which executes assembly-language instruction

syscall.
2. syscall traps to kernel at pre-specified location.
3. kernel’s syscall handler calls kernel’s read().

To handle trap to kernel, hardware atomically:
1. Sets the mode bit to kernel.
2. Saves registers, PC, SP.
3. Changes SP to kernel stack.
4. Changes to the kernel’s address space.
5. Jumps to exception handler.

33

Arguments to system calls
Two options:
1. Store in registers.
2. Store in memory (in whose address space?)

Kernel first checks validity of arguments:

read(int fd, void *buf, size_t size)

Is fd a valid descriptor for open file?
Are all addresses in [buf,buf+size) valid?
Are all addresses in [buf,buf+size) writable?

34

Protection summary
Safe to switch from user to kernel mode because control only transferred to
certain locations and the number of entry points to the system is kept limited to
limit the attack surface.

Where are these locations stored?
Interrupt vector table.

Who can modify interrupt vector table?
Only the kernel. Set once at boot, then never changed.

Why is it easier to control access to interrupt vector table than mode bit?
The mode bit changes constantly and every change must be scrutinized. But the
IVT never changes.

35

Address Space Protection
How are address spaces protected?

Separation of translation data, meaning the translation data must be
protected.

How is translation data protected?

Can update translation data only if mode bit set.

How is mode bit protected?

Sets/reset mode bit when transitioning from user-level to kernel-level code
and back.

Transitions limited by interrupt vector table.

Protection boils down to init process which sets up interrupt vector table when
system boots up.

36

Project 3
Process view:
1. Every process has an address space starting from

VM_ARENA_BASEADDR of size VM_ARENA_SIZE.
2. When a process starts, the entire address space is invalid.
3. Process calls vm_map to make pages valid.
4. Pages becomes invalid when a process ends.

Pager view:
1. One process runs at a time.
2. Sets up page table that the MMU uses for translation.
3. Handles vm_create, vm_map, and vm_fault.

37

Project 3
Swap-backed pages:
1. Global swap file shared by all processes.
2. Pager controls where in swap file page is stored.
3. Private to a process.

File-mapped pages:
1. Process specifies (file, offset).
2. Can be shared across processes.

38

Project 3
1. Do the project incrementally.

2. Swap-backed pages only without fork.

3. Then add support for fork and file-backed pages one after the
other.

4. Pro Tip: Start with state diagrams for swap-backed, file-backed
pages.

39

Project 3: State Diagram
For each unique state, consider:
1. Transitions? Read, write, clock, copy, ...
2. Attributes? Valid, resident, dirty, ...
3. Protections? Enable read, enable write?

40

Mapped

Valid: Yes
Resident: Yes
Dirty: No
Zero-filled: Yes
....

Written

Valid: Yes
Resident: Yes
Dirty: Yes
Zero-filled: No
....

Write

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 13: Kernel vs. user address spaces
	Agenda
	Agenda
	Midterm exam
	Midterm policy
	Agenda
	Dynamic address translation
	Paging
	Page Lookups
	Paging
	Paging
	Paging
	Page table size
	Sparse address space
	Slide Number 15
	Multilevel paging
	Slide Number 17
	Slide Number 18
	Page replacement
	Page Replacement
	Page table entry
	Page table entry
	Page table entry
	Page table entry
	Agenda
	Address space management
	Storing page tables
	Kernel vs. user address spaces
	Accessing physical memory
	How does the kernel access the user’s address space?
	Protection: kernel/user mode
	Switching to kernel mode
	System calls
	Arguments to system calls
	Protection summary
	Address Space Protection
	Project 3
	Project 3
	Project 3
	Project 3: State Diagram

